13955 - Uso de substratos alternativos na germinação de duas cultivares de coentro (*Coriandrum sativum L.*)

Use of alternative substrates germination of two cultivars of coriander (Coriandrum sativum L.)

SOARES, Nazaré Suziane¹; TORRES, Rebeca de Araújo²; RODRIGUES, Antonio Anderson de Jesus³;LIMA, Luciana Ferreira de⁴; TAKANE, Roberto Jun⁵

1Universidade Federal do Ceará, suzianesoares@live.com; 2Universidade Federal do Ceará, rebecatorres1@gmail.com;3 Universidade Federal do Ceará, andersonnjr@hotmail.com; 4 Universidade Federal do Ceará, lucianaf.delima@yahoo.com.br; 5Universidade Federal do Ceará, robertotakane@gmail.com

Resumo: Com o objetivo de avaliar o efeito de diferentes substratos em duas cultivares de coentro (*Coriandrum sativum* L.) utilizaram-se como substratos vermiculita (V), casca de arroz carbonizada (CAC); casca de arroz carbonizada + fibra de coco (1:1 v/v) e casca de arroz carbonizada + fibra de coco (2:1 v/v) e as cultivares Verdão e Asteca. O experimento foi realizado na Horta Didática da Universidade Federal do Ceará, no período de junho a julho de 2013. O delineamento experimental foi inteiramente casualizado, com quatro repetições de 50 sementes e em esquema fatorial 4 x 2. Foram efetuadas as seguintes avaliações: % de germinação (%G) e índice de velocidade de germinação (IVG). Os resultados mostraram que das cultivares a que apresentou o melhor desempenho na %G foi a cv. Verdão que obteve 82% de germinação e um IVG de 7,15. A mistura de casca de arroz carbonizada com fibra de coco na proporção (2:1 v/v), (1:1 v/v) e a vermiculita apresentaram IVG's de 6,28; 5,14 e 4,51, respectivamente.

Palavras-chave: resíduos agrícolas; fibra de coco; casca de arroz carbonizada.

Abstract: The aim of this work was to determine the effect of different substrates in two cultivars of coriander (*Coriandrum sativum* L.). The substrates used was: vermiculite (V),carbonized rice hulls (CRH),carbonized rice hulls + coconut fiber (1:1 v/v) and carbonized hulls + coconut fiber (2:1 v/v) and Verdão and Astecacultivars. The experiment was carried in DidaticHorta of Universidade Federal do Ceará, from June-July 2013. Completely randomized experimental design was usedwith four replications of 50 seeds and 4 x 2 factorial. Were evaluatedgermination index (GI) and germination rate (GR). The results showed that the cultivars that showed the best performance inGI was cv. Verdão who obtained 82% germination and GR of 7.15. A mixture of carbonizedrice hulls, coconut fiber in the ratio (2:1 v/v) (1:1 v/v) and vermiculite presented GR's of 6.28; 5.14 and 4.51, respectively.

Keywords: agricultural waste, coconut fiber; carbonized rice hulls.

Introdução

O coentro (*Coriandrum sativum* L.) é uma olerícola da família Apiaceae amplamente consumida no Brasil e, apesar de ser considerada uma cultura secundária, grande número de produtores está envolvido com sua exploração, tornando-a consequentemente uma cultura de grande importância socioeconômica. As sementes de coentro têm grande valor e importância comercial, por tratar-se de planta condimentar largamente utilizada no Brasil (VIRGÍLIO, 2001).

Cada espécie tem a necessidade de uma proporção adequada entre a disponibilidade de água e aeração para a germinação e, dentro de cada espécie, podem existir diferenças marcantes entre as cultivares quanto à germinação nas

diferentes condições (NASCIMENTO, 2000). Fatores como aeração, estrutura, capacidade de retenção de água poderão alterar tanto a velocidade quanto a porcentagem final de germinação. Sendo assim, a escolha do tipo de substrato deve ser feita com base nas exigências da semente em relação ao seu tamanho, formato e requerimento hídrico (BRASIL, 1992).

O substrato a ser utilizado exerce grande influência sobre a germinação de plantas. O substrato pode ser formado de matéria-prima de origem mineral, orgânica ou sintética, de um só material ou de diversos materiais em misturas (KANASHIRO, 1999). O uso de resíduos agrícolas como substrato atende a uma antiga necessidade de tanto agregar um lucro a esses resíduos quanto baratear o custo da produção de mudas.

O aproveitamento da casca de coco verde é viável por serem suas fibras quase inertes e terem alta porosidade. A facilidade de produção, baixo custo e alta disponibilidade são outras vantagens adicionais apresentadas por este tipo de substrato. Além disso, ajuda a diminuir o volume de resíduos gerados, visto que, após o consumo da água, muitas vezes o coco é descartado, tornando-se um inconveniente para as empresas de coleta de lixo e diminuindo a vida útil dos aterros públicos (ROSA et al., 2002).

A casca de arroz carbonizada consiste num componente de mistura para substratos, e adquire uma notável importância devido à grande disponibilidade nas regiões orizícolas, aliada à necessidade de se dar um destino econômico e ecologicamente correto a este material (FREITAS, 2010).

Diante do exposto o presente trabalho teve como objetivo avaliar a germinação de duas variedades de coentroem diferentes substratos alternativos a base de casca de arroz carbonizada.

Metodologia

O trabalho foi conduzido em casa de vegetação do Departamento de Fitotecnia, da Universidade Federal do Ceará, Campus do Pici localizado a 3°45'S; 38° 33'W e altitude de 19 m no período de junho à julho de 2012.

Utilizaram-se bandejas de polipropileno, preta, com 200 células e colocadas em telado contendo tela de proteção de polipropileno, de coloração preta, com retenção de 70% do fluxo de radiação solar. A temperatura média foi de 35 + 2 °C e a umidade relativa do ar de 60 + 5%. Segundo a classificação de Köppen, a área do experimento está localizada numa região de clima Aw'. Foram utilizadas sementes de coentro das cultivares Verdão e Asteca, colocando-se uma semente por cova de 1,0cm de profundidade.

O delineamento experimental utilizado foi o inteiramente casualizado em esquema fatorial com 2x4, sendo dois tipos de sementes e quatro substratos: vermiculita (V), casca de arroz carbonizada (CAC); casca de arroz carbonizada + fibra de coco (1:1 v/v) ecasca de arroz carbonizada + fibra de coco (2:1 v/v), com quatro repetições, perfazendo 20 parcelas, sendo cada uma constituída por 50 sementes.

As características porcentagem de germinação (%G) e índice de velocidade de germinação (IVG) foram avaliadas aos 15 dias após a semeadura. O índice de

velocidade de emergência (IVG) foi determinado registrando-se a cada três dias o número de sementes germinadas até o décimo quinto dia e calculado pela fórmula proposta por Maguire (1962). Foram consideradas como emergidas as plântulas que apresentavam os cotilédones totalmente livres.

Os resultados obtidos foram submetidos à análise de variância e os substratos comparados pelo teste de Tukey ao nível de 5% de probabilidade pelo programa estatístico Sisvar®- Sistema de análise de variância (FERREIRA, 2003).

Resultados e discussões

A análise estatística revelou que houve diferenças significativas em todas as variáveis analisadas para variedades (Tabela 1) e com relação aos substratos apenas o índice de velocidade de germinação mostrou-se significativo (Tabela 2). A interação entre variedades e substratos não mostrou diferenças significativas em nenhuma das variáveis analisadas.

TABELA 1. Comparação entre as médias observadas, pelo teste de Tukey, para as características % de germinação e índice de velocidade de germinação (IVG) em sementes de duas cultivares de coentro. Universidade Federal do Ceará, 2013.

Variedade	%G	IVG
Asteca	38,0b	2,69b
Verdão	82,0a	7,15a
CV (%)	23,55	27,64

Índice de Velocidade de Germinação (IVG). Letras iguais na coluna indicam médias que não diferem entre si pelo teste de Tukey, a 5% de probabilidade.

A maior percentagem de germinação foi obtida com a cultivar Verdão, que obteve uma germinação de 82%, já a cv. Asteca obteve uma percentagem de germinação de apenas 38%. O baixo índice de germinação da cv. Asteca pode ter sido causado pela alta temperatura no ambiente em que o trabalho foi realizado, pois segundo Pereira et al (2005) trabalhando com esta cultivar sobre diferentes temperaturas em condições de laboratório observaram que aos 30°C a germinação da cv. Asteca foi sensivelmente afetada, resultando em apenas 32% de germinação e quando a temperatura foi de 35°C ocorreu ausência de germinação.

Com isso, em muitos dos casos, a porcentagem de germinação indicada no rótulo da embalagem de determinado lote de sementes, nem sempre irá corresponder à emergência de plântulas em campo obtida pelo produtor e isto deve-se ao fato de que as sementes para serem comercializadas por empresas precisam ser analisadas em laboratório sob condições ótimas para a germinação, inclusive na temperatura ideal para a germinação da espécie em questão. Assim, caso a temperatura do solo por ocasião da semeadura, não seja a ideal para aquela espécie, a germinação poderá ser diferente (geralmente menor) que indicada no rótulo (PEREIRA et al., 2005).

Resultados superiores ao deste trabalho foram obtidos por Pereira et al. (2012), que verificando a composição nutricional de cultivares de coentro, por ocasião do teste de emergência de plântulas obteve taxas de germinação da Super-verdão (92%), cv. Verdão (99%) e cv. Tabocas (100%).

Para o índice de velocidade de germinação a cv. Verdão atinge sua capacidade máxima de germinação numa média de 7,15 dias, tempo superior ao obtido pela cv. Asteca, que obteve média de apenas 2,69 dias. Trata-se de um teste importante,

uma vez que possibilita uma visão preliminar a respeito do vigor de lotes de sementes, permitindo uma distinção qualitativa entre lotes em um tempo inferior ao teste de germinação.

TABELA 2.Comparação entre as médias observadas, pelo teste de Tukey, para o índice de velocidade de germinação em sementes de coentro (*Coriandrum sativum*L.) em diferentes substratos. Universidade Federal do Ceará. 2013.

Substratos	%G	IVG
Casca de arroz carbonizada	0,51a	3,74b
Vermiculita	0,63a	4,51ab
FC:CAC (1:1 v/v)	0,65a	5,14ab
FC:CAC (1:2 v/v)	0,62a	6,28a
CV (%)	23,55	27,64

Índice de Velocidade de Germinação (IVG). Letras iguais na coluna indicam médias que não diferem entre si pelo teste de Tukey, a 5% de probabilidade.

O índice de velocidade de germinação revelou que o tempo necessário para que as sementes expressassem a sua máxima capacidade de germinação foi obtido com médias de 6,28; 5,14 e 4,51 dias, que não diferiram estatisticamente entre si, nos substratos fibra de coco com casca de arroz carbonizada nas proporções (1:2 v/v) e (1:1 v/v) e a vermiculita, respectivamente,

Guedes et al. (2010) testando diferentes substratos na germinação de *Amburana cearenses* obteve o melhor resultado com o uso de vermiculita, que proporcionou índice de velocidade de germinação de 2,12, resultado bem abaixo do obtido pelo presente trabalho com a vermiculita (4,51).

Os resultados refletem a vantajosa combinação da casca de arroz com outros substratos, pois a casca de arroz apresenta alta capacidade de retenção de água, drenagem rápida e eficiente, proporcionando boa oxigenação para as raízes, elevado espaço de aeraçãoao substrato, resistência à decomposição, relativa estabilidade de estrutura, baixa densidade e pH próximo à neutralidade (SOARES et al., 2012) e juntamente com as propriedades complementares da fibra de coco proporcionou melhores condições para a germinação das sementes dessas cultivares.

Conclusões

O coentro cv. Verdão apresentou um melhor desempenho germinativo do que a cv. Asteca nas condições de casa de vegetação. O uso da mistura de casca de arroz carbonizada com fibra de coco mostrou-se eficiente para a máxima capacidade de germinação de coentro.

Referências bibliográficas:

BRASIL. Ministério da Agricultura e da Reforma Agrária. **Regras para análise de sementes**. Brasília: SNDA/DNDV/CLAV, 1992, 365 p.

FERREIRA, D.F. **SISVAR** software. Versão 4.6. Lavras: DEX/UFLA, 2003. Software. FREITAS, G. A. de. **Validação de substratos e proporção de casca de arroz carbonizada para produção de mudas de alface em sistema orgânico**. 2010. 61 f. Dissertação (Mestrado) Gurupi: Universidade Federal do Tocantins, 2010.

GUEDES, R. S. et al. Substratos e temperaturas para testes de germinação e vigor de sementes de *Amburana cearensis* (Allemão) A.C. Smith. **Revista Árvore**, Viçosa, v.34, n.1, p.57-64, 2010.

KANASHIRO, S. **Efeito de diferentes substratos na produção da espécie Aechemeafasciata (Lindley) Baker em vasos**. 1999. 79 f. Dissertação (Mestrado) – Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, 1999.

MAGUIRE, J.D. Speed of germination-aid selection and evaluation for seedling emergence and vigor. **Crop Science**, v.2, p.176-177, 1962.

NASCIMENTO, W.M. Temperatura x germinação. **Seednews**, v.4, n.4, p.44-45, 2000.

PEREIRA, M. F. S. et al. Composição nutricional de cultivares de coentro por ocasião do teste de emergência das plântulas. **Revista Verde de Agroecologia e Desenvolvimento Sustentável**, Mossoró, v. 7, n. 5, p. 01-05, 2012.

ROSA, M. de F. et al. **Utilização da casca de coco como substrato agrícola**. Fortaleza: Embrapa Agroindústria Tropical, 2002. 24 p. (Documentos, 52).

SOARES, F. C. et al. Consumo de água pela cultura de lírio, cultivado em substratos alternativos em condições de ambiente protegido. **Ciência Rural,** Santa Maria, v. 42, n. 6, p. 1001-1006, 2012.

VIRGÍLIO, I. G. F. Sementes da mudança. Agroanalysis, p.13-15, agosto, 2001.

PEREIRA, R. S. et al. Aspectos relacionados à qualidade de sementes de coentro. **Horticultura Brasileira**, Brasília, v.23, n.3, p.703-706, jul-set 2005.