AÇÃO DO ÓLEO ESSENCIAL DE EUCALIPTO SOBRE O CRESCIMENTO "IN VITRO" DE FUNGOS PATOGÊNICOS AO TOMATEIRO

Juliane Ludwig¹; Andréa B. Moura; Zarela G.C.N. Zanatta; Ilisandra Zanandrea; Juliano dos Santos; Veridiana K. Bosenbecker.

Palavras-chave: Eucaliptus citriodora, Lycopersicon esculentum, Fusarium oxisporum f. sp. lycopersici, Corynespora cassicola, Verticilium albo-atrum.

INTRODUÇÃO

A cultura do tomate é uma das mais difíceis de se conduzir, pois ela é sensível a várias doenças. Cerca de 200 doenças são descritas para essa cultura, de diversas causas e etiologias, sendo que o controle da maioria destas enfermidades é feito com aplicações sistemáticas de agrotóxicos, principalmente fungicidas, em muitos casos, seguindo um calendário de aplicações semanais (Minami & Haag, 1989; Jones et al., 1991).

Na intenção de reverter este quadro e contribuir com a preservação do meio ambiente vê-se que o uso de plantas medicinais é uma alternativa no controle de fungos fitopatogênicos A planta medicinal eucalipto (*Eucaliptus citriodora* Hooker M.) possui na sua composição química, compostos secundários como o citronelol. Segundo BONALDO *et al.* (2004), o conhecimento da atividade antimicrobiana dos compostos secundários presentes nessa planta medicinal pode contribuir para a utilização de novas técnicas de controle de doenças de plantas.

Diante do exposto, o objetivo desse trabalho foi avaliar o efeito do óleo essencial de eucalipto, por três diferentes metodologias, sobre o crescimento micelial de fungos patogênicos do tomateiro, visando à busca de um método alternativo de controle das doenças causadas por estes fitopatógenos.

_

¹ Universidade Federal de Pelotas-Campus Universitário s/nº, C.P. 354, CEP:96010-900 <u>juludwig@yahoo.com.br</u>
Apoio CAPES

MATERIAL E MÉTODOS

O óleo foi obtido por arraste a vapor, a partir de folhas frescas de eucalipto. Os fungos utilizados nesse experimento foram: Fusarium oxisporum f.sp. lycoperscici (FO), Corynespora cassicola (CO) e Verticillium albo-atrum (VE), previamente crescidos em meio BDA. O delineamento utilizado foi completamente casualizado com quatro repetições e os resultados, submetidos ao teste de média (Tuckey 5%). Ensaio 1: Crescimento micelial em placas de Petri (P.):

Alíquotas de óleo puro (10µl/10 ml de meio) e em algumas diluições (1:2, 1:4, 1:8. 1:16, 1:32), foram adicionadas ao meio BDA (batata+dextrose+agar) fundente vertido em placas de Petri. No centro de cada placa, após a solidificação do meio, foi colocado um disco de micélio de cada um dos fungos, individualmente, sendo as placas incubadas à 22°C sob luz fluorescente contínua. Como controle, utilizaram-se placas com somente BDA e outras com BDA + 20µl etanol (diluente). A avaliação foi realizada medindo-se o diâmetro das colônias quando o controle (BDA) atingiu o máximo de crescimento.

Ensaio 2: Crescimento micelial em meio líquido (M.L.):

Neste ensaio foram utilizados 20 ml de meio básico BD (batata+dextrose) em Erlenmeyers, onde foram acrescentados 20µl de óleo nas diluições: óleo puro, 1:2, 1:4, 1:8, 1:32, e como controle foram utilizados Erlenmeyer com somente BD e outros com BD + 20µl de etanol (diluente). Em seguida, colocaram-se dois discos de micélio de cada um dos fungos, individualmente, que após serem incubados a 22° C durante 21 dias sob agitação, foram filtrados e secos em estufa à 60°C/72h e posteriormente pesados, com o intuito de verificar o peso seco dos mesmos.

Ensaio 3: Crescimento micelial em placas sobrepostas (P.S.):

Já neste ensaio, 10 ml de meio foram vertidos em placas descartáveis, nas quais colocou-se um disco de micélio de cada um dos fungos, individualmente, previamente crescidos em BDA. Na tampa da placa foram colocados 10µl de óleo nas seguintes diluições: óleo puro, 1:2, 1:4, 1:8, 1:16, 1:32, além de uma testemunha com etanol (diluente) e uma somente com BDA. As placas foram vedadas com fita e incubadas invertidas, para que o óleo não entrasse em contanto com o fungo. Assim que a testemunha sem nenhum composto atingisse a borda da placa, procedeu-se à medição do diâmetro da colônia de cada um dos fungos.

RESULTADOS E DISCUSSÃO

No ensaio em placas de Petri, *F. oxisporum* f.sp. *lycopesici*, mostrou crescimento estatisticamente inferior das colônias apenas para óleo puro, reduzindo em 11,8% o tamanho das mesmas. Para *C. cassicola*, ficou evidenciado que o etanol, usado como diluente, influenciou intensamente o crescimento do fungo, pois esse tratamento reduziu 28,6% o tamanho da colônia em comparação à testemunha com somente BDA sendo o tratamento mais efetivo. *V. albo-atrum*, foi o fungo mais sensível dentre os avaliados. Para óleo puro e diluição 1:2, reduziu em 33,3% e 27,1%, respectivamente, seguido pelas diluições 1:4. 1:8 e 1:32, todas elas apresentando diferenças estatísticas (Tabela 1). Para este fungo, não houve efeito do diluente.

Já no ensaio conduzido em meio líquido, para os fungos *F. oxisporum* f.sp. *lycopesici* e *C. cassicola* nenhuma das diluições mostrou-se estatisticamente superior à testemunha, embora a maioria das diluições tenha sido superior a esta. No entanto, *V. albo-atrum* apresentou diferença estatística significativa com relação à testemunha nas diluições óleo puro, 1:2, 1:4, com reduções no crescimento micelial das colônias de 36, 54, 35%, respectivamente (Tabela 1).

No ensaio conduzido em placas sobrepostas, o efeito ficou mais evidenciado, devido aos compostos voláteis terem ficado retidos nas placas vedadas. *F. oxisporum* f.sp. *lycopersici* se mostrou o fungo mais sensível ao óleo, mostrando 100% de inibição do crescimento em óleo puro e na diluição 1:2, seguido pelas diluições 1:4, 1:8 e 1:16 com diferença estatística para todas. *C. cassicola* foi influenciada em todas as diluições com reduções de até 75%, porém apenas em óleo puro e 1:2 houve diferenças estatísticas. *V. albo-atrum* apresentou diferença estatística para óleo puro, 1:2, 1:4 e 1:8 com reduções de 89, 58, 51 e 38%, respectivamente (Tabela 1).

FIORI *et al.* (2000), observaram a completa inibição do crescimento micelial de *Didymella bryoniae* na presença de óleo essencial de *Cymbopogon citratus, Eucaliptus citriodora* e *Ageratum conyzoides* até uma concentração de 20μl. Resultados similares foram obtidos por PATTNAIK et al. (1996), usando óleo de *E. citriodora*, constatando a completa inibição do crescimento das colônias do mesmo fungo numa concentração entre 0,25 e 10 μl/ml.

Aparentemente os compostos voláteis contribuem com uma maior intensidade na inibição dos fungos avaliados, uma vez que a avaliação em placas

sobrepostas resultou em efeitos mais intensos. Compostos não voláteis também têm ação sobre estes fungos, o que ficou evidenciado quando estes foram crescidos em meio sólido e líquido adicionados de óleo.

REFERÊNCIAS BIBLIOGRÁFICAS

BONALDO, S.M.; SCHWAN-ESTRADA, K.R.F.; STANGARLIN, J.R.; TESSMANN, D.J.; SCAPIM, C.A. Fungitoxicidade, atividade elicitora de fitoalexinas e proteção de pepino contra *Colletrotrichum lagenarium* pelo extrato aquoso de *Eucaliptus citriodora*. **Fitopatologia Brasileira**, 2004, v.29, p. 128-134.

FIORI, A.C. G.; SCHWAN-ESTRADA, K.R.F.; STANGARLIN, J.R.; VIDA, J.B.; SCAPIM, C.A.; CRUZ, M.E.S. Antifungal activity of leaf extracts and essential oils of some medicinal plants against *Didymella bryoniae*. **Journal of Phytopathology**, 2000, v.148, p.483-487.

JONES, J.B.; JONES, J. P.; R.E.; ZITTER, T.A. **Compendium of tomato diseases**. St. Paul: APS press, 1991. 73p.

MINAMI, K.; HAAG, H.P. O Tomateiro. Campinas: Fundação Cargil, 1989. 397 p.

PATTNAIK, S.; SUBRAMANYAM, V. R.; KOLE, C. Antibacterial and antifungal activity of ten essential oils *in vitro*. **Microbios**, 1996, v.86, p.237-246.

TABELAS E FIGURAS

Tabela 1- Crescimento fúngico em diâmetro médio (mm) em meio BDA e massa seca (g) em meio BD, contendo diferentes concentrações de óleo de eucalipto.

	PATÓGENOS								
	FO			CO			VE		
Diluição	P.	M.L.	P.S.	P.	M.L.	P.S.	P.	M.L.	P.S.
BDA	9,0a	0,103a	8,0a	8,7a	0,125a	8,0a	9,0a	0,095a	8.0a
Etanol	8,9ab	0,095a	8,0a	6,2c	0,129a	7,3ab	8,1b	0,102a	8.0a
Ó.P.*	7,9b	0,090a	0,5c	7,7bc	0,116a	2,0cde	6,6d	0,061bc	0.9c
1:2	9,0a	0,099a	0,5c	7,8ab	0,120a	5,9bcd	6,0e	0,044c	3.4b
1:4	8,7ab	0,090a	1,8c	7,9ab	0,132a	7,4ab	7,1cd	0,062bc	3.9b
1:8	8,7ab	0,091a	6,5b	7,2bc	0,096a	6,6abcd	7,4d	0,070abc	5.0b
1:16	9,0a	0,091a	3,7b	6,6bc	0,119a	6,8abc	8,2ab	0,097a	6.7ab
1:32	9,0a	0,102a	7,7a	6,7bc	0,151a	6,9ab	7,8bc	0,088ab	7.9a

Valores seguidos de mesma, na coluna, não diferem entre si ao nível de 5% de significância pelo Teste de Tuckey.

^{*}O.P.=óleo puro